Zero-inflated poisson regression untuk memodelkan faktor-faktor yang mempengaruhi terjadinya kebakaran di kabupaten Sidoarjo

Authors

  • Febri Rahmat Dona Fakultas MIPA, Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Jawa Timur, Indonesia
  • Hendro Permadi Fakultas MIPA, Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Jawa Timur, Indonesia

DOI:

https://doi.org/10.17977/um067v2i112022p6

Abstract

The purpose of this research is determine the factors that affect the rate of fires in Sidoarjo using analysis Zero-Inflated Poisson (ZIP) regression. The procedure in this research through the steps are detecting the distribution of a variable number of fire (Y), identified cases multikolinearitas, establishing models Poison regression, testing overdispersi or underdispersi, establishing models ZIP regression, testing coefficient simultaneously and partially, and choose a suitable model. The independent variable used are population density (X_1), the number of factories (X_2), sugarcane and paddy land area (X_3), vacant land that overgrown with weeds (X_4), and year (X_5) Based on the regression model Zero-Inflated Poisson (ZIP) obtained best model of rate of fires that affected by the population density (X_1), sugarcane and paddy land area (X_3), and the year (X_5) to distinguish the difference the incidence of fires in every year. The model has a value of AIC (257,4) and the smallest value of R^2 (70,86).

References

Agresti, A. 2002. Categorical Data Analysis. New York: John Wiley and Sons.

Cameron, A.C, & Trivedi, P.K. 1998. Regression Analysis of coun data. Cambridge: Cambridge University Press.

Hilbe, J. M. 2011. Negative Binomial Regression. Edisi Kedua. Cambridge: Cambridge University Press.

Hossain, S., & Howlader, H. A. 2015. Estimation Techniques for Regression Model with Zero-inflated Poisson Data. International Journal of Statistics and Probability, 4 (4): 64-76.

Lambert, D. 1992. Zero-Inflated Poisson Regression, With an Application to Defects in Manufacturing. Technometrics, 34 (1):1-14.

Myers, R. H. 1990. Classical and Modern Regression with Aplications. Boston: PWS-KENT Publising Company.

Downloads

Published

07-05-2023

How to Cite

Dona, F. R. ., & Permadi, H. (2023). Zero-inflated poisson regression untuk memodelkan faktor-faktor yang mempengaruhi terjadinya kebakaran di kabupaten Sidoarjo. Jurnal MIPA Dan Pembelajarannya, 2(11), 6. https://doi.org/10.17977/um067v2i112022p6

Issue

Section

Articles