Perkembangan Teknologi Perangkat Disipasi Energi: Studi Literatur

Penulis

  • Roro Sulaksitaningrum Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Jawa Timur, Indonesia

DOI:

https://doi.org/10.17977/UM068v1n5p372-384

Kata Kunci:

perangkat disipasi energi, damper, beban dinamis, seismik

Abstrak

Conventional structures absorb earthquake energy by yielding or failure of building materials. Energy dissipation devices are gaining popularity due to their ability to reduce the vibration response of structures subjected to dynamic loads. In recent decades, the development of energy dissipation device technology has continued to develop through research and direct applications in various types of civil buildings. From its development, energy dissipation devices can be grouped into several categories, starting from simple passive energy dissipation devices, semi- active energy dissipation devices that can increase efficiency with an adaptive system that is able to regulate damping behavior in real time, active energy dissipation devices that can increasing device capacity and intelligence, until hybrid energy dissipation devices which can increase overall reliability and structural efficiency.

Struktur konvensional menyerap energi gempa dengan mengalami yielding atau kegagalan (failure) pada material bangunan. Perangkat disipasi energi (energy dissipation devices) mendapatkan popularitasnya dikarenakan kemampuannya dalam mengurangi respons getaran struktur dari struktural yang menerima berbagai jenis beban dinamis. Dalam beberapa dekade ini, perkembangan teknologi perangkat disipasi energi terus berkembang melalui berbagai riset dan aplikasi langsung dalam berbagai jenis bangunan sipil. Dari perkembangannya, perangkat disipasi energi dapat dikelompokkan menjadi beberapa kategori yaitu mulai dari perangkat disipasi energi pasif yang sederhana, perangkat disipasi energi semi-aktif yang mampu meningkatkan efisiensi dengan adanya sistem adaptif yang mampu mengatur perilaku peredam secara real time, perangkat disipasi energi aktif yang dapat meningkatkan kapasitas serta kecerdasan perangkat, hingga perangkat disipasi energi hibrid dimana dapat meningkatkan reliabilitas secara keseluruhan serta efisiensi struktural.

Referensi

Barzegar, V., Laflamme, S., Downey, A., Li, M., & Hu, C. (2020). Numerical evaluation of a novel passive variable friction damper for vibration mitigation. Engineering Structures, 220, 110920.

Cheng, F. Y. (2008). Smart structures: innovative systems for seismic response control. CRC press.

Miyamoto, H. K., Gilani, A. S., & Wada, A. (2008, October). State of the art design of steel moment frame buildings with dampers. In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China.

Jaisee, S., Yue, F., & Ooi, Y. H. (2021). A state-of-the-art review on passive friction dampers and their applications. Engineering Structures, 235, 112022.

Javanmardi, A., Ibrahim, Z., Ghaedi, K., Ghadim, H. B., & Hanif, M. U. (2020). State-of-the-art review of metallic dampers: testing, development, and implementation. Archives of Computational Methods in Engineering, 27(2), 455-478.

Lee, D., & Taylor, D. P. (2001). Viscous damper development and future trends. The Structural Design of Tall Buildings, 10(5), 311-320.

Lu, L. Y., Lin, T. K., Jheng, R. J., & Wu, H. H. (2018). Theoretical and experimental investigation of position-controlled semi-active friction damper for seismic structures. Journal of Sound and Vibration, 412, 184-206.

Nikoukalam, M. T., Mirghaderi, S. R., & Dolatshahi, K. M. (2015). Analytical study of moment-resisting frames retrofitted with shear slotted bolted connection. Journal of Structural Engineering, 141(11), 04015019.

Pardo‐Varela, J., & De la Llera, J. C. (2015). A semi‐active piezoelectric friction damper. Earthquake Engineering & Structural Dynamics, 44(3), 333-354.

Parulekar, Y. M., & Reddy, G. R. (2009). Passive response control systems for seismic response reduction: A state-of-the-art review. International Journal of Structural Stability and Dynamics, 9(01), 151-177.

Saaed, T. E., Nikolakopoulos, G., Jonasson, J. E., & Hedlund, H. (2015). A state-of-the-art review of structural control systems. JVC/Journal of Vibration and Control, 21(5), 919– 937. https://doi.org/-10.1177/1077546313478294

Shu, Z., Ma, R., & He, M. (2016). Dimensional analysis of the slotted bolted connections against impulsive earthquake ground motions. Journal of Constructional Steel Research, 125, 128-141.

Soong, T. T., & Spencer Jr, B. F. March (2002). Supplemental energy dissipation: State-of-the-art and state-of-the-practice. Engineering Structures, 24(3), 243-59.

Spencer Jr, B. F., & Nagarajaiah, S. (2003). State of the art of structural control. Journal of Structural Engineering, 129(7), 845–856.

Tan, P., Zhou, F., & Yan, W. (2010). A semi-active variable stiffness and damping system for vibration control of civil engineering structures. In 2004 ANCEER Annual Meeting.

Teruna, D. R., Majid, T. A., & Budiono, B. (2015). Experimental study of hysteretic steel damper for energy dissipation capacity. Advances in Civil Engineering, 2015.

Zahraei, S. M., Moradi, A., & Moradi, M. (2013). Using pall friction dampers for seismic retrofit of a 4-story steel building in Iran. In Topics in Dynamics of Civil Structures, Volume 4 (pp. 101-107). Springer, New York, NY.

Diterbitkan

2021-05-29

Terbitan

Bagian

Articles