Pengaruh Filament Feeding Length, Jarak Nozzle dan Kecepatan Pencetakan terhadap Pembuatan Microfibers Menggunakan Mesin 3d Printer Fused Deposition Modelling

Authors

  • Dede Islamiadin Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Jawa Timur, Indonesia
  • Redyarsa Bintara Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Jawa Timur, Indonesia
  • Aminnudin Aminnudin Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Jawa Timur, Indonesia

DOI:

https://doi.org/10.17977/um068v1i62021p443-449

Keywords:

3d printer, 3d printing fdm, fused deposition modelling, microfibers

Abstract

This study aims to analyze the effect of filament feeding length, nozzle distance and varied printing speeds on the thickness and length of the filament fiber of the 3D Printer FDM machine. This research method is experimental, while the test results were analyzed using the Taguchi method and analysis of variance (ANOVA) using the Minitab software. The concept used is by utilizing the surface tension on the stretched filament or commonly known as the liquid bridge phenomenon. This method is possible to make thinning of the extruded filament. The lower extrusion volume thickness and higher printing speed are concluded to produce micro-sized fibers due to the smaller viscoelastic internal compression force along the filament fiber. This study uses variations in filament feeding length (0.2 mm, 0.3 mm, 0.4 mm), nozzle distance (0.6 mm, 0.7 mm, 0.8 mm) and printing speed (1000 mm/min), 1500 mm/min, 2000 mm/min). The results of the analysis of the thickness of the filament fiber obtained the optimal variation of filament feeding length 0.2 mm, printing speed 2000 mm/min, and nozzle distance 0.8 mm which resulted in a thickness of 120 m. The results of the analysis of the length of the filament fiber obtained the optimal variation of filament feeding length of 0.4 mm, printing speed of 1000 mm/min, and nozzle distance of 0.6 mm which resulted in a length of 3 cm.

Penelitian ini bertujuan untuk menganalisa pengaruh filament feeding length, jarak nozzle dan kecepatan cetak yang divariasikan terhadap ketebalan dan panjang serat filament mesin 3D Printer FDM. Metode penelitian ini menggunakan eksperimental, sedangkan hasil pengujian dianalisis dengan metode Taguchi dan analysis of variance (ANOVA) menggunakan software Minitab. Konsep yang digunakan yaitu dengan memanfaatkan tegangan permukaan pada filament yang ditarik memanjang atau biasa disebut dengan fenomena liquid bridge. Metode ini dimungkinkan dapat membuat penipisan pada filament yang di ektrude. Ketebalan volume ekstrusi yang lebih rendah dan kecepatan pencetakan yang lebih tinggi disimpulkan dapat membuat serat dengan ukuran mikro karena gaya kompresi internal viscoelastic yang lebih kecil di sepanjang serat filament. Penelitian ini menggunakan variasi filament feeding length (0,2 mm, 0,3 mm, 0,4 mm), jarak nozzle (0,6 mm, 0,7 mm, 0,8 mm) dan kecepatan pencetakan (1000 mm/min, 1500 mm/min, 2000 mm/min). Hasil analisis ketebalan serat filament didapatkan variasi optimal filament feeding length 0,2 mm, kecepatan pencetakan 2000 mm/min, dan jarak nozzle 0,8 mm yang menghasilkan ketebalan 120 μm. Hasil analisis panjang serat filament didapatkan variasi optimal filament feeding length 0,4 mm, kecepatan pencetakan 1000 mm/min, dan jarak nozzle 0,6 mm yang menghasilkan panjang 3 cm

References

B.E. Yamamoto, & Trimble, A. Z. (2016). Additive manufacturing/3D printing of polymer nanocomposites: structure-related multifunctional properties.

Bazilevsky, A. V., Entov, V. M., & Rozhkov, A. N. (2011). Breakup of a liquid bridge as a method of rheological testing of biological fluids. Fluid Dynamics, 46(4), 613–622. https://doi.org/10.1134/S0015462811040119

Farah, F & Shady, S. (2016). Sifat mekanik material PLA.

Holt, C., Edwards, L., Keyte, L., Moghaddam, F., & Townsend, B. (2019). Construction 3D Printing. In 3D Concrete Printing Technology (Vol. 42, Issue 3). Elsevier Inc. https://doi.org/10.1016/b978-0-12-815481-6.00017-8

Lu, Q., Song, K. Y., Feng, Y., & Xie, J. (2021). Fabrication of suspended uniform polymer microfibers by FDM 3D printing. CIRP Journal of Manufacturing Science and Technology, 32, 179–187. https://doi.org/10.1016/j.cirpj.2020.11.005

Mishra, D. K., Upadhyay, A. K., & Sharma, S. (2021). An efficient approach for manufacturing process using Big data analytics. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.05.146

Niendorf, K., & Raeymaekers, B. (2020). Quantifying macro- and microscale alignment of carbon microfibers in polymer-matrix composite materials fabricated using ultrasound directed self-assembly and 3D-printing. Composites Part A: Applied Science and Manufacturing, 129(November 2019), 105713. https://doi.org/10.1016/j.compositesa.2019.105713

Saputra, O. A. (2019). Pengoperasian Mesin Cetak 3D (Issue December).

Tezel, T., Ozenc, M., & Kovan, V. (2021). Impact properties of 3D-printed engineering polymers. Materials Today Communications, 26(December 2020), 102161. https://doi.org/10.1016/j.mtcomm.2021.102161

Tracy, J. W. (2007). 3D Printing A revolution in the making. Family Practice Management, 14(8), 11. https://doi.org/10.18848/2327-7912/cgp/v12i01/58293

Varotsis, A. B. (2019). Introduction to FDM 3D printing. Https://Www.Hubs.Com.

Downloads

Published

28-06-2021

Issue

Section

Articles