Penilaian umum pemodelan evapotranspirasi harian TSEB-PT berbsasis Sentinel-2 dan Sentinel-3 di Jawa Timur

Authors

  • Ahmad Ridho Nugroho Universitas Negeri Malang
  • Ike Sari Astuti Universitas Negeri Malang
  • Sugeng Utaya Universitas Negeri Malang

DOI:

https://doi.org/10.17977/um063v3i6p573-592

Keywords:

evapotranspirasi, Two Surface Energy Balance (TSEB), remote sensing, Sentinel-2, Sentinel-3

Abstract

The Sentinel-2 and Sentinel-3 constellations provide options to complement the use of open source satellites data (Modis and Landsat) through the advantages of spatial and temporal resolution to monitor terrestrial ecosystems, one of which is evapotranspiration. Recently, Guzinski developed a daily evapotranspiration estimation methodology (ETd) which combines the roles of these two satellites with several models and TSEB-PT becomes the model with the best accuracy for EC sites on their study areas. This research is intented to assess the performance of TSEB-PT in general to be applied in East Java (Indonesia) which has different climates and landscapes using the same methodology as Guzinski. Some experimental parameterizations were also used outside of the standard operational mode, including the resistance model, and ETi to ETd extrapolation method. Our study found that the model worked well in Juanda site and was applied in other areas but did not work as well as in Juanda. The Rsl from ECMWF reanalysis data had the most significant role in producing errors, causing high average bias error in ET estimation of ~2mm/day. Landscape also affects the model performance, although in low to medium scale, whereas the model tends to work very well on homogeneous lowland landscape but the accuracy would drop on mountainous area as the cloud cover probability increased resulting the higher error chance on ETi to ETd extrapolation stage.

Konstelasi Sentinel-2 dan Sentinel-3 memberikan opsi untuk melengkapi penggunaan data satelit open source (modis/landsat) melalui keunggulan resolusi spasial dan temporal untuk monitoring ekosistem terestris, salah satunya evapotranspirasi. Baru-baru ini Guzinski mengembangkan metodologi estimasi evapotranspirasi harian (ETd) yang menggabungkan peran kedua satelit ini dengan beberapa model kesetimbangan energi dan TSEB-PT menjadi model dengan akurasi paling baik terhadap situs EC di beberapa wilayah studinya. Artikel ini dibuat untuk menilai kinerja TSEB-PT secara umum ketika diterapkan di jawa timur yang berbeda secara iklim dan landskapnya menggunakan metodologi yang sama Guzinski. Beberapa pengaturan yang berbeda dengan mode operasional model dijalankan antara lain model resistans dan proporsi nilai G serta tiga metode ekstrapolasi ETi ke ETd. Studi kami menemukan bahwa model bekerja baik pada stasiun Juanda dan memiliki kelayakan untuk diterapkan di wilayah lain meskipun tidak sebaik di Juanda. Masalah utama dan paling signifikan disemua stasiun pada temuan kami ada pada input data Rsl yang berpengaruh pada tingkat kesuksesan pemodelan serta bias error yang cukup tinggi (~2 mm/hari). Bentang lahan juga berpengaruh pada tingkat rendah-menengah pada performa model dimana wilayah homogen cenderung memiliki tingkat keberhasilan yang tinggi, serta wilayah dengan potensi frekuensi tutupan awan tinggi seperti pegunungan berisiko pada penurunan akurasi pada tahap ekstrapolasi ETi ke ETd.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and drainage paper No. 56 Crop Evapotranspiration.

Anderson, M. C., Allen, R. G., Morse, A., & Kustas, W. P. (2012). Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122, 50-65.

Bindhu, V. M., Narasimhan, B., & Sudheer, K. P. (2013). Development and verification of a non-linear disaggregation method (NL-DisTrad) to downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration. Remote Sensing of Environment, 135, 118-129.

Bontemps, S., Defourny, P., Radoux, J., Van Bogaert, W., Lamarche, C., & Achard, F. (2013). Consistent Global Land Cover Maps for Climate Modelling Communities: Current Achievements of The ESA' Land Cover CCI. ESA Living Planet Symposium. Edinburgh, UK: ESA.

Bosquilia, R. W., Neale, C. M., Duarte, S. N., Longhi, S. J., Ferraz, S. F. D. B., Muller-Karger, F. E., & McCarthy, M. J. (2018). Temporal evaluation of evapotranspiration for sugar cane, planted forest and native forest using landsat 8 images and a two-source energy balance. Computers and Electronics in Agriculture, 151, 70-76.

Brutsaert, W. (2005). Hydrology: An Introduction. New York: Cambridge University Press.

Chávez, J. L., Neale, C. M., Prueger, J. H., & Kustas, W. P. (2008). Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values. Irrigation Science, 27, 67-81.

Chen, X., Su, Z., Ma, Y., Trigo, I., & Gentine, P. (2021). Remote sensing of global daily evapotranspiration based on a surface energy balance method and reanalysis data. Journal of Geophysical Research: Atmospheres, 126(16), e2020JD032873.

Choudhury, B. J., Idso, S. B., & Reginato, R. J. (1987). Analysis of an empirical model for soil heat flux under a growing wheat crop for estimating evaporation by an infrared-temperature based energy balance equation. Agricultural and Forest Meteorology, 39(4), 283-297.

Elnmer, A., Khadr, M., Kanae, S., & Tawfik, A. (2019). Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta. Agricultural Water Management, 213, 682-692.

Gao, F., Kustas, W. P., & Anderson, M. C. (2012). A data mining approach for sharpening thermal satellite imagery over land. Remote Sensing, 4(11), 3287-3319.

Guzinski, R., & Nieto, H. (2019). Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations. Remote sensing of Environment, 221, 157-172.

Guzinski, R., Nieto, H., Sandholt, I., & Karamitilios, G. (2020). Modelling high-resolution actual evapotranspiration through Sentinel-2 and Sentinel-3 data fusion. Remote Sensing, 12(9), 1433.

Huang, L., Cai, J., Zhang, B., Chen, H., Bai, L., Wei, Z., & Peng, Z. (2019). Estimation of evapotranspiration using the crop canopy temperature at field to regional scales in large irrigation district. Agricultural and Forest Meteorology, 269, 305-322.

Ibá n˜ ez, M., & Castellv ı´, F. (2000). Simplifying daily evapotranspiration estimates over short full‐canopy crops. Agronomy Journal, 92(4), 628-632.

Jackson, R. D., Hatfield, J. L., Reginato, R. J., Idso, S. B., & Pinter Jr, P. J. (1983). Estimation of daily evapotranspiration from one time-of-day measurements. Agricultural Water Management, 7(1-3), 351-362.

Kustas, W. P., & Norman, J. M. (1999). Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover. Agricultural and Forest Meteorology, 94(1), 13-29.

Kustas, W. P., & Norman, J. M. (2000). A two‐source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces. Agronomy Journal, 92(5), 847-854.

Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., ... & Gascon, F. (2016). Sentinel-2 Sen2Cor: L2A processor for users. In Proceedings living planet symposium 2016 (pp. 1-8). Spacebooks Online.

McNaughton, K. G., & Van den Hurk, B. J. J. M. (1995). A ‘Lagrangian’revision of the resistors in the two-layer model for calculating the energy budget of a plant canopy. Boundary-Layer Meteorology, 74(3), 261-288.

Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote sensing of Environment, 111(4), 519-536.

Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote sensing of environment, 115(8), 1781-1800.

Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 77(3-4), 263-293.

Ogée, J., Lamaud, E., Brunet, Y., Berbigier, P., & Bonnefond, J. M. (2001). A long-term study of soil heat flux under a forest canopy. Agricultural and Forest Meteorology, 106(3), 173-186.

Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly weather review, 100(2), 81-92.

Rasmussen, M. O., Sørensen, M. K., Wu, B., Yan, N., Qin, H., & Sandholt, I. (2014). Regional-scale estimation of evapotranspiration for the North China Plain using MODIS data and the triangle-approach. International journal of applied earth observation and geoinformation, 31, 143-153.

Raupach, M. R. (1994). Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Boundary-layer meteorology, 71(1-2), 211-216.

Sánchez, J. M., Scavone, G., Caselles, V., Valor, E., Copertino, V. A., & Telesca, V. (2008). Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region. Journal of Hydrology, 351(1-2), 58-70.

Schaudt, K. J., & Dickinson, R. E. (2000). An approach to deriving roughness length and zero-plane displacement height from satellite data, prototyped with BOREAS data. Agricultural and Forest Meteorology, 104(2), 143-155.

Senay, G. B., Friedrichs, M., Singh, R. K., & Velpuri, N. M. (2016). Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sensing of Environment, 185, 171-185.

Shuttleworth, W. J., Gurney, R. J., Hsu, A. Y., & Ormsby, J. P. (1989). FIFE: The variation in energy partition at surface flux sites. IAHS Publ, 186(6), 523-534.

Sugita, M., & Brutsaert, W. (1991). Daily evaporation over a region from lower boundary layer profiles measured with radiosondes. Water Resources Research, 27(5), 747-752.

Downloads

Published

2023-06-19

Issue

Section

Articles