Estimasi fase pertumbuhan dan produktivitas tebu menggunakan citra sentinel 2 di Kecamatan Dampit, Kabupaten Malang

Authors

  • Ayu Putri Wahyuni Universitas Negeri Malang
  • Ike Sari Astuti Universitas Negeri Malang
  • Purwanto Purwanto Universitas Negeri Malang

DOI:

https://doi.org/10.17977/um063v2i12p1260-1278

Keywords:

tebu, sentinel 2, fase pertumbuhan, produktivitas

Abstract

Sugarcane is the main raw material for sugar production. Estimation of the growth phase and sugarcane productivity is very important as input in the plantation management system and decision making. Estimating the growth phase and productivity of sugarcane using remote sensing technology is challenging because sugarcane is varies both spatially and temporally when compared to other crops. The utilization of Sentinel 2 imagery is expected to be an alternative in estimating sugarcane productivity. So, this study aims to estimate the growth and productivity of sugarcane using Sentinel 2 imagery in Dampit District, Malang Regency. The estimation of the sugarcane growth phase and productivity was carried out using the 10-day time-series NDVI parameter approach to determine the growth trend of sugarcane. NDVI extraction when it reaches 240 - 300 DAP is used to estimate sugarcane productivity. The estimation model was built using the random forest regression method. The results show that the sugarcane growth estimation model cannot accurately predict the sugarcane growth phase with low accuracy of -1.18 with RMSE 102 days, NRMSE 28 percent. While the productivity estimation model has a high accuracy of 0.94 with RMSE 7.23 Ton/Ha, NRMSE 18 percent, and an estimated productivity ratio of 1.02–1.05 which shows the average productivity of Sentinel 2 image is close to the productivity of the DTPHP.

Tebu merupakan tanaman perkebunan yang menjadi bahan baku utama untuk produksi gula. Estimasi fase pertumbuhan dan produktivitas tebu sangat penting sebagai masukan dalam sistem pengelolaan perkebunan dan pengambilan keputusan. Estimasi fase pertumbuhan dan produktivitas tebu menggunakan teknologi penginderaan jauh memiliki tantangan karena tebu merupakan tanaman yang bervariasi baik secara spasial maupun temporal jika dibandingkan dengan tanaman lainnya. Pemanfaatan citra Sentinel 2 diharapkan mampu menjadi alternatif dalam estimasi produktivitas tebu. Sehingga penelitian ini bertujuan untuk mengestimasi fase pertumbuhan dan produktivitas tebu menggunakan citra Sentinel 2 di Kecamatan Dampit Kabupaten Malang. Estimasi fase pertumbuhan tebu dan produktivitas dilakukan dengan menggunakan pendekatan parameter NDVI time series untuk mengetahui tren pertumbuhan tebu. Ekstraksi NDVI saat mencapai 240 - 300 HST digunakan untuk estimasi produktivitas tebu. Model estimasi dibangun menggunakan metode random forest regression. Hasil estimasi menunjukkan model estimasi pertumbuhan tebu tidak dapat melakukan estimasi fase pertumbuhan tebu secara akurat dengan akurasi yang rendah sebesar -1.18 dengan RMSE 102 hari, NRMSE 28 persen. Sedangkan, model estimasi produktivitas memiliki akurasi tinggi sebesar 0.94 dengan RMSE 7.23 Ton/Ha, NRMSE 18 persen, serta rasio produktivitas estimasi 1,02–1,05 yang menunjukkan rata-rata produktivitas citra Sentinel 2 mendekati produktivitas Dinas Tanaman Pangan Hortikultura dan Perkebunan (DTPHP).

References

Akbari, E., Boloorani, A. D., Samany, N. N., Hamzeh, S., Soufizadeh, S., & Pignatti, S. (2020). Crop mapping using random forest and particle swarm optimization based on multi-temporal Sentinel-2. Remote Sensing, 12(9), 1449.

Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831.

BPS. (2020). Statistik Tebu Indonesia. https://www.bps.go.id/publication/2021/11/30/-e68b9816fa1b9b3447e4868d/¬statistik-tebu-indonesia-2020.html

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Canata, T. F., Wei, M. C. F., Maldaner, L. F., & Molin, J. P. (2021). Sugarcane yield mapping using high-resolution imagery data and machine learning technique. Remote Sensing, 13(2), 232.

Cardoso, T. F., Watanabe, M. D. B., Souza, A., Chagas, M. F., Cavalett, O., Morais, E. R., Nogueira, L. A. H., Leal, M. R. L. V, Braunbeck, O. A., & Cortez, L. A. B. (2018). Economic, environmental, and social impacts of different sugarcane production systems. Biofuels, Bioproducts and Biorefining, 12(1), 68–82.

Cohen, J. (1960). Kappa: Coefficient of concordance. Educ Psych Measurement, 20(37), 37–46.

Cruz, G. A. Z., Vélez, E. P., Chávez, L. T., & Magdaleno, H. F. (2017). Application of remote sensing technologies for estimating sugarcane yield. Revista Mexicana de Ciencias Agrícolas, 8(7), 1575–1586.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., & Martimort, P. (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36.

Fahmi, L. P. Z., & Widartono, B. S. (2019). Pemanfaatan Foto Udara Format Kecil (Fufk) Inframerah Berwarna Untuk Identifikasi Usia Tanam Dan Kemasakan Tanaman Tebu (Saccharum Officinarum) Di Sebagian Kecamatan Gamping, Godean Dan Prambanan. Jurnal Bumi Indonesia, 8(3).

Fernandes, J. L., Rocha, J. V., & Lamparelli, R. A. C. (2011). Sugarcane yield estimates using time series analysis of spot vegetation images. Scientia Agricola, 68(2), 139–146.

Guo, Y., Xia, H., Pan, L., Zhao, X., Li, R., Bian, X., Wang, R., & Yu, C. (2021). Development of a new phenology algorithm for fine mapping of cropping intensity in complex planting areas using Sentinel-2 and Google Earth Engine. ISPRS International Journal of Geo-Information, 10(9), 587.

Inman-Bamber, N. G. (1994). Temperature and seasonal effects on canopy development and light interception of sugarcane. Field Crops Research, 36(1), 41–51.

Kairupan, D. (2014). Estimasi Umur Dan Produktivitas Tebu (Saccharum Officinarum L.) Menggunakan Analisis Citra Berorientasi Objek. Universitas Brawijaya.

Li, M., Zhang, R., Luo, H., Gu, S., & Qin, Z. (2022). Crop Mapping in the Sanjiang Plain Using an Improved Object-Oriented Method Based on Google Earth Engine and Combined Growth Period Attributes. Remote Sensing, 14(2), 273.

Lisboa, P. I., Damian, M. J., Cherubin, R. M., Barros, S. P. P., Fiorio, R. P., Cerri, C. C., & Cerri, E. P. C. (2018). Prediction of sugarcane yield based on NDVI and concentration of leaf-tissue nutrients in fields managed with straw removal. Agronomy, 8(9), 196.

Lofton, J., Tubana, B. S., Kanke, Y., Teboh, J., Viator, H., & Dalen, M. (2012). Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors, 12(6), 7529–7547.

Mróz, M., & Sobieraj, A. (2004). Comparison of several vegetation indices calculated on the basis of a seasonal SPOT XS time series, and their suitability for land cover and agricultural crop identification. Technical Sciences, 7(7), 39–66.

Muhtadi, M. (2019). Produktivitas Tebu Keprasan (Saccharum officinarum L.) Varietas Bululawang di Beberapa Wilayah Kabupaten Malang. Universitas Brawijaya.

Murwibowo, P., & Gunawan, T. (2013). Aplikasi Penginderaan Jauh Dan Sistem Informasi Geografis Untuk Mengkaji Perubahan Koefisien Limpasan Permukaan Akibat Letusan Gunung Merapi Tahun 2010 Di Sub Das Gendol Yogyakarta. Jurnal Bumi Indonesia, 2(1).

Mutanga, S., Van Schoor, C., Olorunju, P. L., Gonah, T., & Ramoelo, A. (2013). Determining the best optimum time for predicting sugarcane yield using hypertemporal satellite imagery. Advances in Remote Sensing 2, 269–275.

Nietupski, T. C., Kennedy, R. E., Temesgen, H., & Kerns, B. K. (2021). Spatiotemporal image fusion in Google Earth Engine for annual estimates of land surface phenology in a heterogenous landscape. International Journal of Applied Earth Observation and Geoinformation, 99, 102323.

Octora, W. (2014). Analisis Luas Lahan Sawah Berbasis Citra Modis di Provinsi Jawa Barat Tahun 2002-2012. Bogor: Fakultas Pertanian Institut Pertanian Bogor.

Pearson, K. (1904). On the theory of contingency and its relation to association and normal correlation (Vol. 1). Dulau and Company London, UK.

Rahman, M. M., & Robson, A. (2020). Integrating Landsat-8 and Sentinel-2 time series data for yield prediction of sugarcane crops at the block level. Remote Sensing, 12(8), 1313.

Riajaya, P. D., & Kadarwati, F. T. (2016). Kesesuaian Tipe Kemasakan Varietas Tebu pada Tipologi Lahan Bertekstur Berat, Tadah Hujan, dan Drainase Lancar. Buletin Tanaman Tembakau, Serat & Minyak Industri, 8(2), 85–97.

Rouse Jr, J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation.

Saini, R., & Ghosh, S. K. (2019). Analyzing the impact of red-edge band on land use land cover classification using multispectral RapidEye imagery and machine learning techniques. Journal of Applied Remote Sensing, 13(4), 44511.

Sakamoto, T. (2021). Early Classification Method for US Corn and Soybean by Incorporating MODIS-Estimated Phenological Data and Historical Classification Maps in Random-Forest Regression Algorithm. Photogrammetric Engineering & Remote Sensing, 87(10), 747–758.

Singh, A., & Tiwari, A. K. (2018). Mineral nutrition in plants and its management in soil. Emerging Trends of Plant Physiology for Sustainable Crop Production, CRC Press, New Jersey, 281–296.

Singh, R., Patel, N. R., & Danodia, A. (2022). Deriving Phenological Metrics from Landsat-OLI for Sugarcane Crop Type Mapping: A Case Study in North India. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-022-01515-w

Soetopo, D. (2016). Uret pada tanaman tebu dan perkembangan teknologi pengendaliannya dalam mendukung pertanian berkelanjutan. Perspektif, 15(2), 110–123.

Som-ard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F., & Immitzer, M. (2021). Remote sensing applications in sugarcane cultivation: A review. Remote Sensing, 13(20), 4040.

Som-ard, J., Hossain, M. D., Ninsawat, S., & Veerachitt, V. (2018). Pre-harvest sugarcane yield estimation using UAV-based RGB images and ground observation. Sugar Tech, 20(6), 645–657.

Tejera, N. A., Rodés, R., Ortega, E., Campos, R., & Lluch, C. (2007). Comparative analysis of physiological characteristics and yield components in sugarcane cultivars. Field Crops Research, 102(1), 64–72.

Wang, M., Liu, Z., Baig, M. H. A., Wang, Y., Li, Y., & Chen, Y. (2019). Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms. Land Use Policy, 88, 104190.

Yulianti, T. (2020). Status dan strategi teknologi pengendalian penyakit utama tebu di Indonesia status and control strategy of important sugarcane diseases in Indonesia. Perspektif, 19(1), 1–16.

Zhao, D., & Li, Y. R. (2015). Climate change and sugarcane production: potential impact and mitigation strategies. International Journal of Agronomy, 2015.

Downloads

Published

2023-01-04

Issue

Section

Articles