Retracted: Estimasi fase pertumbuhan dan produktivitas tebu menggunakan citra sentinel 2 di Kecamatan Dampit, Kabupaten Malang

Authors

  • Ayu Putri Wahyuni Universitas Negeri Malang
  • Ike Sari Astuti Universitas Negeri Malang
  • Purwanto Purwanto Universitas Negeri Malang

DOI:

https://doi.org/10.17977/um063v3i2p104-122

Keywords:

tebu, sentinel 2, fase pertumbuhan, produktivitas

Abstract

Following a rigorous, carefully concerns and considered review of the article published in Jurnal Integrasi dan Harmoni Inovatif Ilmu-Ilmu Sosial to article entitled “Estimasi fase pertumbuhan dan produktivitas tebu menggunakan citra sentinel 2 di Kecamatan Dampit, Kabupaten Malang”. This paper has been found to be in violation of the Jurnal Integrasi dan Harmoni Inovatif Ilmu-Ilmu Sosial Publication principles and has been retracted. The document and its content has been removed from Jurnal Integrasi dan Harmoni Inovatif Ilmu-Ilmu Sosial and reasonable effort should be made to remove all references to this article.

References

Akbari, E., Boloorani, A. D., Samany, N. N., Hamzeh, S., Soufizadeh, S., & Pignatti, S. (2020). Crop mapping using random forest and particle swarm optimization based on multi-temporal Sentinel-2. Remote Sensing, 12(9), 1449.

Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831.

BPS. (2020). Statistik Tebu Indonesia. Badan Pusat Statistik.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Canata, T. F., Wei, M. C. F., Maldaner, L. F., & Molin, J. P. (2021). Sugarcane yield mapping using high-resolution imagery data and machine learning technique. Remote Sensing, 13(2), 232.

Cardoso, T. F., Watanabe, M. D. B., Souza, A., Chagas, M. F., Cavalett, O., Morais, E. R., Nogueira, L. A. H., Leal, M. R. L. V, Braunbeck, O. A., & Cortez, L. A. B. (2018). Economic, environmental, and social impacts of different sugarcane production systems. Biofuels, Bioproducts and Biorefining, 12(1), 68–82.

Cohen, J. (1960). Kappa: Coefficient of concordance. Educ Psych Measurement, 20(37), 37–46.

Cruz, G. A. Z., Vélez, E. P., Chávez, L. T., & Magdaleno, H. F. (2017). Application of remote sensing technologies for estimating sugarcane yield. Revista Mexicana de Ciencias Agrícolas, 8(7), 1575–1586.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., & Martimort, P. (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36.

Fahmi, L. P. Z., & Widartono, B. S. (2019). Pemanfaatan Foto Udara Format Kecil (Fufk) Inframerah Berwarna Untuk Identifikasi Usia Tanam Dan Kemasakan Tanaman Tebu (Saccharum Officinarum) Di Sebagian Kecamatan Gamping, Godean Dan Prambanan. Jurnal Bumi Indonesia, 8(3).

Fernandes, J. L., Rocha, J. V., & Lamparelli, R. A. C. (2011). Sugarcane yield estimates using time series analysis of spot vegetation images. Scientia Agricola, 68(2), 139–146.

Guo, Y., Xia, H., Pan, L., Zhao, X., Li, R., Bian, X., Wang, R., & Yu, C. (2021). Development of a new phenology algorithm for fine mapping of cropping intensity in complex planting areas using Sentinel-2 and Google Earth Engine. ISPRS International Journal of Geo-Information, 10(9), 587.

Inman-Bamber, N. G. (1994). Temperature and seasonal effects on canopy development and light interception of sugarcane. Field Crops Research, 36(1), 41–51.

Kairupan, D. (2014). Estimasi Umur Dan Produktivitas Tebu (Saccharum Officinarum L.) Menggunakan Analisis Citra Berorientasi Objek. Universitas Brawijaya.

Li, M., Zhang, R., Luo, H., Gu, S., & Qin, Z. (2022). Crop Mapping in the Sanjiang Plain Using an Improved Object-Oriented Method Based on Google Earth Engine and Combined Growth Period Attributes. Remote Sensing, 14(2), 273.

Lisboa, I. P., Damian, J. M., Cherubin, M. R., Barros, P. P. S., Fiorio, P. R., Cerri, C. C., & Cerri, C. E. P. (2018). Prediction of sugarcane yield based on NDVI and concentration of leaf-tissue nutrients in fields managed with straw removal. Agronomy, 8(9), 196.

Lofton, J., Tubana, B. S., Kanke, Y., Teboh, J., Viator, H., & Dalen, M. (2012). Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index. Sensors, 12(6), 7529–7547.

Mróz, M., & Sobieraj, A. (2004). Comparison of several vegetation indices calculated on the basis of a seasonal SPOT XS time series, and their suitability for land cover and agricultural crop identification. Technical Sciences, 7(7), 39–66.

Muhtadi, M. (2019). Produktivitas Tebu Keprasan (Saccharum officinarum L.) Varietas Bululawang di Beberapa Wilayah Kabupaten Malang. Universitas Brawijaya.

Murwibowo, P., & Gunawan, T. (2013). Aplikasi Penginderaan Jauh Dan Sistem Informasi Geografis Untuk Mengkaji Perubahan Koefisien Limpasan Permukaan Akibat Letusan Gunung Merapi Tahun 2010 Di Sub Das Gendol Yogyakarta. Jurnal Bumi Indonesia, 2(1).

Mutanga, S., Van Schoor, C., Olorunju, P. L., Gonah, T., & Ramoelo, A. (2013). Determining the best optimum time for predicting sugarcane yield using hypertemporal satellite imagery. Advances in Remote Sensing 2, 269–275.

Nietupski, T. C., Kennedy, R. E., Temesgen, H., & Kerns, B. K. (2021). Spatiotemporal image fusion in Google Earth Engine for annual estimates of land surface phenology in a heterogenous landscape. International Journal of Applied Earth Observation and Geoinformation, 99, 102323.

Octora, W. (2014). Analisis Luas Lahan Sawah Berbasis Citra Modis di Provinsi Jawa Barat Tahun 2002-2012. Bogor: Fakultas Pertanian Institut Pertanian Bogor.

Pearson, K. (1904). On the theory of contingency and its relation to association and normal correlation (Vol. 1). Dulau and Company London, UK.

Rahman, M. M., & Robson, A. (2020). Integrating Landsat-8 and Sentinel-2 time series data for yield prediction of sugarcane crops at the block level. Remote Sensing, 12(8), 1313.

Riajaya, P. D., & Kadarwati, F. T. (2016). Kesesuaian Tipe Kemasakan Varietas Tebu pada Tipologi Lahan Bertekstur Berat, Tadah Hujan, dan Drainase Lancar. Buletin Tanaman Tembakau, Serat & Minyak Industri, 8(2), 85–97.

Rouse Jr, J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation.

Saini, R., & Ghosh, S. K. (2019). Analyzing the impact of red-edge band on land use land cover classification using multispectral RapidEye imagery and machine learning techniques. Journal of Applied Remote Sensing, 13(4), 44511.

Sakamoto, T. (2021). Early Classification Method for US Corn and Soybean by Incorporating MODIS-Estimated Phenological Data and Historical Classification Maps in Random-Forest Regression Algorithm. Photogrammetric Engineering & Remote Sensing, 87(10), 747–758.

Singh, A., & Tiwari, A. K. (2018). Mineral nutrition in plants and its management in soil. Emerging Trends of Plant Physiology for Sustainable Crop Production, CRC Press, New Jersey, 281–296.

Singh, R., Patel, N. R., & Danodia, A. (2022). Deriving Phenological Metrics from Landsat-OLI for Sugarcane Crop Type Mapping: A Case Study in North India. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-022-01515-w

Soetopo, D. (2016). Uret pada tanaman tebu dan perkembangan teknologi pengendaliannya dalam mendukung pertanian berkelanjutan. Perspektif, 15(2), 110–123.

Somard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F., & Immitzer, M. (2021). Remote sensing applications in sugarcane cultivation: A review. Remote Sensing, 13(20), 4040.

Somard, J., Hossain, M. D., Ninsawat, S., & Veerachitt, V. (2018). Pre-harvest sugarcane yield estimation using UAV-based RGB images and ground observation. Sugar Tech, 20(6), 645–657.

Tejera, N. A., Rodés, R., Ortega, E., Campos, R., & Lluch, C. (2007). Comparative analysis of physiological characteristics and yield components in sugarcane cultivars. Field Crops Research, 102(1), 64–72.

Wang, M., Liu, Z., Baig, M. H. A., Wang, Y., Li, Y., & Chen, Y. (2019). Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms. Land Use Policy, 88, 104190.

Yulianti, T. (2020). Status dan Strategi Teknologi Pengendalian Penyakit Utama Tebu di Indonesia Status and Control Strategy of Important Sugarcane Diseases In Indonesia. Perspektif, 19(1), 1–16.

Zhao, D., & Li, Y.-R. (2015). Climate change and sugarcane production: potential impact and mitigation strategies. International Journal of Agronomy, 2015.

Published

2023-02-10

Issue

Section

Articles