PENGARUH KETEBALAN LAPISAN PDMS-H TERHADAP PERFORMA NANOGENERATOR ZNO NRS/ PDMS-H/ CU

Authors

  • Afiifatur Rachmah PPG Pascasarjana, Universitas Negeri Malang, Malang, Indonesia
  • Nandang Mufti PPG Pascasarjana, Universitas Negeri Malang, Malang, Indonesia
  • Chusnana Insjaf PPG Pascasarjana, Universitas Negeri Malang, Malang, Indonesia

Keywords:

Nanogenerator, Piezoelectric, ZnO, Nanorod, PDMS-H, Cu

Abstract

In the past decade, piezoelectric nanogenerators have demonstrated relatively low power performance, necessitating advancements to enhance their efficiency. The performance improvement of piezoelectric nanogenerators can be achieved by incorporating conductive polymers into the nanogenerator layers. This study aims to investigate the effect of hydride-terminated polydimethylsiloxane (PDMS-H) layer thickness on the conductivity and performance of piezoelectric nanogenerators. The piezoelectric nanogenerators were fabricated by growing ZnO nanorods (ZnO NRs) on an ITO PET substrate using the hydrothermal method at 95°C. PDMS-H was applied over the ZnO NRs using the spin coating method with varying thicknesses, determined by spin coating speeds of 2000 rpm, 3000 rpm, 4000 rpm, and 5000 rpm. Subsequently, Cu was deposited onto the PDMS-H layer using the DC magnetron sputtering method, forming a single device. XRD patterns confirmed the successful growth of ZnO NRs with a hexagonal (wurtzite) crystal structure. SEM results showed that ZnO NRs had diameters ranging from 431 nm to 1038 nm. Additionally, UV-Vis characterization of ZnO NRs indicated a bandgap of 3.63 eV. FTIR characterization revealed absorption peaks for ZnO NRs in the region from 4000 to 400 cm-1 and for PDMS-H in 838 cm-1 and 3243 cm-1. The electrical conductivity for each variation was4,98 x 102 -1cm-1, 3,98 x 102-1cm-1, 1,37 x 102-1cm-1, and 0,05 x 102-1cm-1, with corresponding performance outputs of 732.9 µWatt, 270.3 µWatt, 170.7 µWatt, and 128.7 µWatt. The study results indicate that piezoelectric nanogenerators' electrical conductivity and performance are directly proportional to the PDMS-H layer thickness. As the PDMS-H layer becomes thicker, the conductivity and performance of the piezoelectric nanogenerators increase, and conversely, as the PDMS-H layer becomes thinner, the conductivity and performance decrease.

References

A. Manuscript. (2020). Ac ce pte d M us Development of Sn doped ZnO based.

A. N. Sendanu. (2020). Implementasi Rangkaian Voltage-Doubler Piezoelektrik Keramik Murata 7BB-35-3 Untuk Pemanfaatn Energi Getaran Motor Bakar.

Almutairi, Z., Ren, C. L., & Simon, L. (2012). Evaluation of polydimethylsiloxane (PDMS) surface modification approaches for microfluidic applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 415, 406–412. https://doi.org/10.1016/j.colsurfa.2012.10.008

Batra, K., Sinha, N., & Kumar, B. (2021). Ba-doped ZnO nanorods: Efficient piezoelectric filler material for PDMS based flexible nanogenerator. Vacuum, 191, 110385. https://doi.org/10.1016/j.vacuum.2021.110385

Bensmaine, S., & Benyoucef, B. (2014). Effect of the Temperature on ZnO Thin Films Deposited by r.f. Magnetron. Physics Procedia, 55, 144–149. https://doi.org/10.1016/j.phpro.2014.07.021

Bhagat, A. A. S., Jothimuthu, P., & Papautsky, I. (2007). Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping. Lab on a Chip, 7(9), 1192. https://doi.org/10.1039/b704946c

Biswas, P., Hoque, N. A., Thakur, P., Saikh, M. M., Roy, S., Khatun, F., Bagchi, B., & Das, S. (2019). Portable Self-Powered Piezoelectric Nanogenerator and Self-Charging Photo-Power Pack Using In Situ Formed Multifunctional Calcium Phosphate Nanorod-Doped PVDF Films. Langmuir, 35(52), 17016–17026. https://doi.org/10.1021/acs.langmuir.9b03264

Chauhan, A., Verma, R., Kumari, S., Sharma, A., Shandilya, P., Li, X., Batoo, K. M., Imran, A., Kulshrestha, S., & Kumar, R. (2020). Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Scientific Reports, 10(1), 7881. https://doi.org/10.1038/s41598-020-64419-0

Chen, J., Qiu, Q., Han, Y., & Lau, D. (2019). Piezoelectric materials for sustainable building structures: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 101, 14–25. https://doi.org/10.1016/j.rser.2018.09.038

Chen, Z., He, J., Liu, J., & Xiong, Y. (2019). Switching Delay in Self-Powered Nonlinear Piezoelectric Vibration Energy Harvesting Circuit: Mechanisms, Effects, and Solutions. IEEE Transactions on Power Electronics, 34(3), 2427–2440. https://doi.org/10.1109/TPEL.2018.2845701

Cheng, Y.-T., Rodak, D. E., Angelopoulos, A., & Gacek, T. (2005). Microscopic observations of condensation of water on lotus leaves. Applied Physics Letters, 87(19). https://doi.org/10.1063/1.2130392

Della Gaspera, E., Bersani, M., Cittadini, M., Guglielmi, M., Pagani, D., Noriega, R., Mehra, S., Salleo, A., & Martucci, A. (2013). Low-Temperature Processed Ga-Doped ZnO Coatings from Colloidal Inks. Journal of the American Chemical Society, 135(9), 3439–3448. https://doi.org/10.1021/ja307960z

Djelloul, A., Aida, M.-S., & Bougdira, J. (2010). Photoluminescence, FTIR and X-ray diffraction studies on undoped and Al-doped ZnO thin films grown on polycrystalline α-alumina substrates by ultrasonic spray pyrolysis. Journal of Luminescence, 130(11), 2113–2117. https://doi.org/10.1016/j.jlumin.2010.06.002

Faris, R. A., Al-Hayali, S. K., & Al-Janabi, A. H. (2021). Au coated ZnO/MWCNTs nanocomposites film-induced four-wave-mixing effect for multi-wavelength generation in erbium-doped fiber laser. Optics Communications, 485, 126746. https://doi.org/10.1016/j.optcom.2020.126746

He, Q., Li, X., Zhang, J., Zhang, H., & Briscoe, J. (2021). P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy, 85, 105938. https://doi.org/10.1016/j.nanoen.2021.105938

Hewlett, R. M., & McLachlan, M. A. (2016). Surface Structure Modification of ZnO and the Impact on Electronic Properties. Advanced Materials, 28(20), 3893–3921. https://doi.org/10.1002/adma.201503404

Hu, D., Yao, M., Fan, Y., Ma, C., Fan, M., & Liu, M. (2019). Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy, 55, 288–304. https://doi.org/10.1016/j.nanoen.2018.10.053

Jayababu, N., & Kim, D. (2021). ZnO nanorods@conductive carbon black nanocomposite based flexible integrated system for energy conversion and storage through triboelectric nanogenerator and supercapacitor. Nano Energy, 82, 105726. https://doi.org/10.1016/j.nanoen.2020.105726

Kumar, R., Al-Dossary, O., Kumar, G., & Umar, A. (2015). Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review. Nano-Micro Letters, 7(2), 97–120. https://doi.org/10.1007/s40820-014-0023-3

Lee, Y., Zhang, Y., Ng, S. L. G., Kartawidjaja, F. C., & Wang, J. (2009). Hydrothermal Growth of Vertical ZnO Nanorods. Journal of the American Ceramic Society, 92(9), 1940–1945. https://doi.org/10.1111/j.1551-2916.2009.03148.x

Liang, Y. (2020). Fundamental Research on Electronic Image Recognition of Cylindrical Zno Nanorods Based on Deep Learning. IOP Conference Series: Materials Science and Engineering, 782(2), 022034. https://doi.org/10.1088/1757-899X/782/2/022034

M. Afdhol. (2020). Analisis Prakiraan Kebutuhan Dan Ketersediaan Energi Listrik Tahun 2019-2023. Anal. Prakiraan Kebutuhan Dan Ketersediaan Energi List, 17.

M. Hill. (1972). 0. 05-0. 08. 5.

Mufti, N., Damayanti, A., Aripriharta, Arramel, Taufiq, A., & Sunaryono. (2018). The Growth of ZnO Nanorods on Stainless-steel foils and Its Application for Piezoelectric Nanogenerator. Journal of Physics: Conference Series, 1093, 012004. https://doi.org/10.1088/1742-6596/1093/1/012004

Nethaji, P., & Senthil Kumar, P. (2022). V-Ag doped ZnO nanorod as high-performance electrode material for supercapacitors with enhanced specific capacitance and cycling stability. Chemical Engineering Research and Design, 178, 356–368. https://doi.org/10.1016/j.cherd.2021.12.039

No Title. (n.d.). https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.136848

Nour, E. S., Sandberg, M. O., Willander, M., & Nur, O. (2014). Handwriting enabled harvested piezoelectric power using ZnO nanowires/polymer composite on paper substrate. Nano Energy, 9, 221–228. https://doi.org/10.1016/j.nanoen.2014.07.014

Nuh, A. F., & Hendrowati, W. (2017). Studi Eksperimental Energi Listrik yang Dihasilkan oleh Mekanisme Ocean Wave Energy Harvester Tipe Pelampung Bola dengan Metode Cantilever Piezoelectric. Jurnal Teknik ITS, 5(2). https://doi.org/10.12962/j23373539.v5i2.20433

Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., & Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4). https://doi.org/10.1063/1.1992666

Pokai, S., Limnonthakul, P., Horprathum, M., Eiamchai, P., Pattantsetakul, V., Limwichean, S., Nuntawong, N., Porntheeraphat, S., & Chitichotpanya, C. (2017). Influence of seed layer thickness on well-aligned ZnO nanorods via hydrothermal method. Materials Today: Proceedings, 4(5), 6336–6341. https://doi.org/10.1016/j.matpr.2017.06.136

Radziuk, D., & Möhwald, H. (2016). Ultrasonically treated liquid interfaces for progress in cleaning and separation processes. Physical Chemistry Chemical Physics, 18(1), 21–46. https://doi.org/10.1039/C5CP05142H

Rahman, W., Garain, S., Sultana, A., Ranjan Middya, T., & Mandal, D. (2018). Self-Powered Piezoelectric Nanogenerator Based on Wurtzite ZnO Nanoparticles for Energy Harvesting Application. Materials Today: Proceedings, 5(3), 9826–9830. https://doi.org/10.1016/j.matpr.2017.10.173

Rajbongshi, B. M., & Samdarshi, S. K. (2014). ZnO and Co-ZnO nanorods—Complementary role of oxygen vacancy in photocatalytic activity of under UV and visible radiation flux. Materials Science and Engineering: B, 182, 21–28. https://doi.org/10.1016/j.mseb.2013.11.013

Ren, L., & Liu, J. (2019). Synthesis and gas transport properties of polyamide membranes containing PDMS groups. RSC Advances, 9(17), 9737–9744. https://doi.org/10.1039/C8RA10550B

Roundy, S., Wright, P. K., & Rabaey, J. (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131–1144. https://doi.org/10.1016/S0140-3664(02)00248-7

Saleh, R., & Djaja, N. F. (2014). UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices and Microstructures, 74, 217–233. https://doi.org/10.1016/j.spmi.2014.06.013

Shin, D.-J., Ji, J.-H., Kim, J., Jo, G. H., Jeong, S.-J., & Koh, J.-H. (2019). Enhanced flexible piezoelectric energy harvesters based on BaZrTiO3–BaCaTiO3 nanoparticles/PVDF composite films with Cu floating electrodes. Journal of Alloys and Compounds, 802, 562–572. https://doi.org/10.1016/j.jallcom.2019.05.363

Shin, S.-H., Kim, Y.-H., Lee, M. H., Jung, J.-Y., Seol, J. H., & Nah, J. (2014). Lithium-Doped Zinc Oxide Nanowires–Polymer Composite for High Performance Flexible Piezoelectric Nanogenerator. ACS Nano, 8(10), 10844–10850. https://doi.org/10.1021/nn5046568

Solati, E., & Dorranian, D. (2017). Estimation of Lattice Strain in ZnO Nanoparticles Produced by Laser Ablation at Different Temperatures. Journal of Applied Spectroscopy, 84(3), 490–497. https://doi.org/10.1007/s10812-017-0497-0

Strunk, J., Kähler, K., Xia, X., & Muhler, M. (2009). The surface chemistry of ZnO nanoparticles applied as heterogeneous catalysts in methanol synthesis. Surface Science, 603(10–12), 1776–1783. https://doi.org/10.1016/j.susc.2008.09.063

Tan, H. J., Zainal, Z., Talib, Z. A., Lim, H. N., Shafie, S., Tan, S. T., Tan, K. B., & Bahrudin, N. N. (2021). Synthesis of high quality hydrothermally grown ZnO nanorods for photoelectrochemical cell electrode. Ceramics International, 47(10), 14194–14207. https://doi.org/10.1016/j.ceramint.2021.02.005

Tim Sekertaris Jenderal Dewan Energi Nasional. (2019). Indonesia Energy Out Look (pp. 1689–1699).

Wang, Z. L. (2014). Triboelectric nanogenerators as new energy technology and self-powered sensors – Principles, problems and perspectives. Faraday Discuss., 176, 447–458. https://doi.org/10.1039/C4FD00159A

Waremra, R. S., & Betaubun, P. (2018). Analysis of Electrical Properties Using the four point Probe Method. E3S Web of Conferences, 73, 13019. https://doi.org/10.1051/e3sconf/20187313019

Zhang, J., Li, M. K., Yu, L. Y., Liu, L. L., Zhang, H., & Yang, Z. (2009). Synthesis and piezoelectric properties of well-aligned ZnO nanowire arrays via a simple solution-phase approach. Applied Physics A, 97(4), 869–876. https://doi.org/10.1007/s00339-009-5348-2

Zhang, Junping, & Seeger, S. (2011). Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Advanced Functional Materials, 21(24), 4699–4704. https://doi.org/10.1002/adfm.201101090

Zhao, K., Wang, Y., Han, L., Wang, Y., Luo, X., Zhang, Z., & Yang, Y. (2019). Nanogenerator-Based Self-Charging Energy Storage Devices. Nano-Micro Letters, 11(1), 19. https://doi.org/10.1007/s40820-019-0251-7

Zhou, Q., Kim, J.-N., Han, K.-W., Oh, S.-W., Umrao, S., Chae, E. J., & Oh, I.-K. (2019). Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-Mesh hybrid electrode. Nano Energy, 59, 120–128. https://doi.org/10.1016/j.nanoen.2019.02.022

Zhu, F., Ji, S., Zhu, J., Qian, Z., & Yang, J. (2018). Study on the influence of semiconductive property for the improvement of nanogenerator by wave mode approach. Nano Energy, 52, 474–484. https://doi.org/10.1016/j.nanoen.2018.08.026

Zhu, Z., Wang, Z., Zhou, Y., Wei, Y., & She, A. (2021). Synthesis and structure of calcium silicate hydrate (C-S-H) modified by hydroxyl-terminated polydimethylsiloxane (PDMS). Construction and Building Materials, 267, 120731. https://doi.org/10.1016/j.conbuildmat.2020.120731

Downloads

Published

01-05-2024

How to Cite

Rachmah, A. ., Mufti, N. ., & Insjaf, C. . (2024). PENGARUH KETEBALAN LAPISAN PDMS-H TERHADAP PERFORMA NANOGENERATOR ZNO NRS/ PDMS-H/ CU . Jurnal MIPA Dan Pembelajarannya (JMIPAP), 4(10), 3. Retrieved from http://journal3.um.ac.id/index.php/mipa/article/view/5702

Issue

Section

Articles