Efektivitas Microalgal Fuel Cell Spirulina sp. sebagai Sumber Energi Listrik

Authors

  • Nefertiti Riyan Putri Hasanah JurusanFisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Malang, Jalan Semarang No. 5, Malang, 65145, Indonesia
  • Indri Febriani Jurusan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Malang, Jalan Semarang No. 5, Malang, 65145, Indonesia
  • Fami Israyusnita Jurusan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Malang, Jalan Semarang No. 5, Malang, 65145, Indonesia
  • Facchur Rozy Dwi Septian Jurusan Teknik Elektro, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Malang, Jalan Semarang No. 5, Malang, 65145, Indonesia
  • Indra Kurniawan Saputra Jurusan Teknik Elektro, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Malang, Jalan Semarang No. 5, Malang, 65145, Indonesia

Abstract

Pasokan energi stabil dan kontinyu menjadi kebutuhan primer kehidupan di bumi. Namun pada
kenyataannya, saat ini keberadaan sumber energi terbatas, sehingga diperlukan adanya sumber
energi terbarukan untuk memenuhi pasokan energi tersebut. Salah satu yang potensial untuk
menjadi sumber energi ialah Spirulina sp. Spirulina sp. merupakan mikroalga yang potensial untuk
menjadi sumber energi listrik dalam pengaplikasiannya sebagai anolit pada microalgal fuel cell.
Tujuan dari penelitian ini untuk mengetahui efektivitas microalgal fuel cell Spirulina sp. sebagai
sumber energi listrik. Konstruksi microalgal fuel cell mengadaptasi dari microbial fuel cell (MFC) di
mana digunakan untuk mengukur nilai tegangan yang dihasilkan. Microalgal fuel cell menggunakan
variasi volume anolit berupa kultur Spirulina sp. dan volume katolit berupa nutrisi Spirulina sp.
Adapun hasil yang diperoleh berupa efektivitas tegangan tertinggi menggunakan perbandingan
anolit sebanyak 100 ml dan katolit sebanyak 500 ml. Berdasarkan data hasil penelitian, mikroalga
Spirulina sp. terbukti efektif sebagai sumber energi terbarukan dalam menghasilkan energi listrik.

References

Abdurrachman, O., Mutiara, M., & Buchori, L. (n.d.). Pengikatan Karbon Dioksida Dengan Mikroalga (Chlorella

vulgaris, Chlamydomonas sp., Spirullina sp.) Dalam Upaya Untuk Meningkatkan Kemurnian Biogas.

Jurnal Teknologi Kimia Dan Industri, 2(4), 212–216.

Abeydeera, L. H. U. W., Mesthrige, J. W., & Samarasinghalage, T. I. (n.d.). Global Research on Carbon Emissions:

A Scientometric Review. Sustainability, 11.

Akinyemi, T. O. dan R., & O.J. (n.d.). Mitigation of CO2 Emissions in Transportation and Industrial Processes

using Renewable Energy Technologies-A Review. European Journal of Engineering Research and

Science, 4(5), 58–59.

Buwono, N. R., & Nurhasanah, R. Q. (n.d.). Studi pertumbuhan populasi Spirulina sp. Pada skala kultur yang

berbeda. JIPK, 10(1).

Cevik, E., Tombuloglu, H., Anıl, I., Senel, M., Sabit, H., AbdulAzeez, S., Borgio, J. F., & Barghouthi, M. (n.d.). Direct

electricity production from Microalgae Choricystis sp. And investigation of the boron to enhance the

electrogenic activity. International Journal of Hydrogen Energy, 45(19), 11330–11340.

Chouler, J., Bentley, I., Vaz, F., Fee, A. O., Cameron, P. J., & Di, M. (n.d.). Exploring the use of cost-effective

membrane materials for microbial fuel cell based sensors. Electrochim Acta, 231, 319–326.

Deng, H., Wu, Y. C., Zhang, F., Huang, Z. C., Chen, Z., Xu, H. J., & Zhao, F. (n.d.). Factors affecting the performance

of single-chamber soil microbial fuel cells for power generation. Pedosphere, 24(3), 330–338.

Elmekawy, A., Hegab, H. M., Vanbroekhoven, K., & Pant, D. (n.d.). Techno-productive potential of

photosynthetic microbial fuel cells through different configurations. Renewable and Sustainable Energy

Reviews, 39, 617–627.

Fatemi, S., Ghoreyshi, A., Najafpour, G., & Rahimnejad, M. (n.d.). Bioelectricity generation in mediator-less

microbial fuel cell: Application of pure and mixed cultures. Iranica Journal Energy Environ, 3, 2079–

Hadiyanto, M. A. (n.d.). Mikroalga: Sumber Pangan dan Energi Masa Depan. UPT UNDIP Press.

Jafary, T., Ghoreyshi, A. A., Najafpour, G. D., Fatemi, S., & Rahimnejad, M. (n.d.). Investigation on performance

of microbial fuel cells based on carbon sources and kinetic models. International Journal Energy Res,

(2), 1539–1549.

Kristin, E. (n.d.). Produksi energi listrik melalui Microbial Fuel Cell Menggunakan limbah industri tempe

Kusmayadi, A., Leong, Y. K., Yen, H. W., Huang, C. Y., Dong, C. D., & Chang, J. S. (n.d.). Microalgae-microbial fuel

cell (mMFC): An integrated process for electricity generation, wastewater treatment, CO2

sewuestration and biomasss production. Int J Energy, 44(12), 1–12.

McCormick, A. J., Bombelli, P., Bradley, R. W., Thorne, R., Wenzel, T., & Howe, C. J. (n.d.). Biophotovoltaics:

Oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy &

Environmental Science, 8(4), 1092–1109.

Park, I. H., Christy, M., Kim, P., & Nahma, K. S. (n.d.). Enhanced electrical contact of microbes using Fe3 O4/CNT

nanocomposite anode in mediator-lessmicrobial fuel cell. Biosens Bioelectron, 58, 75–80.

Pisciotta, I. M., Zou, Y. J., & Baskakov, I. V. (n.d.). Role of the photosynthetic electron transfer chain in

electrogenic activity of cyanobacteria. Applied Microbiology and Biotechnology, 91, 377–385.

Polman, A., Knight, M., Garnett, E. C., Ehrler, B., & Sinke, W. C. (n.d.). Photovoltaic materials: Present efficiencies

and future challenges. Science, 352(6283).

Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S. (n.d.). Microbial fuel cell as new technology for

bioelectricity generation: A review. Alexandria Engineering Journal, 54, 745–756.

Rahimnejad, M., Bakteri, G., Najafpour, G., Ghasemi, M., & Oh, S. E. (n.d.). A review on the effect of proton

exchange membrane in microbial fuel cells. Biofuel Research Journal, 1, 7–15.

Saba, B., Chrisstya, A. D., Yu, Z., & Co, A. C. (n.d.). Sustainable power generation from bacteria-algal microbiaal

fuel cells (MFCs): An overview. Renewable and Sustainable Energy Reviews, 73, 75–84.

Salimijazi, F., Parra, E., & Barstow, B. (n.d.). Electrical energy storage with engineered biological systems.

Journal of Biological Engineering, 13(38).

Seok, W. H., Hyung, J. K., Yong, S. C., & Tai, H. C. (n.d.). Field experiments on bioelectricity production from lake

sediment using microbial fuel cell technology. Bulletin Korean Chemistry Society, 29(11), 2189–2194.

Sivakumar, P., Ilango, K., Praveena, N., Sircar, A., Balasubramanian, R., Sakthisaravanan, A., & Kannan, R. (n.d.).

Algal Fuel Cell. In Book: Microalgal Biotechnology Chapter 5.

https://doi.org/10.5772/intechopen.74285.

Soni, R. A., Sudhakar, K., & Rana, R. S. (2019). Comparative study on the growth performance of Spirulina

platensis on modifying culture media. Energy Reports, 5, 327–336.

https://doi.org/10.1016/j.egyr.2019.02.009

Sun, C. W., & Hsiau, S. S. (n.d.). Effect of Electrolyte Concentration Difference on Hydrogen Production during

PEM Electrolysis. Journal of Electrochemical Science and Technology, 9(2), 99–108.

Wang, L., Tian, L., Deng, X., Zhang, M., Sun, S., Zhang, W., & Zhao, L. (n.d.). Photosensitizers from Spirulina for

Solar Cell. Journal of Chemistry.

Wu, Y. C., Wang, Z. J., Zheng, Y., Xiao, Y., Yang, Z. H., & Zhao, F. (n.d.). Light intensity affects the performance of

photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Appl. Energy, 116, 86–

Zhu, C., Zhai, X., Wang, J., Han, D., Li, Y., Xi, Y., Tang, Y., & Z, C. (n.d.). Large-scale cultivation of Spirulina in a

floating horizontal photobioreactor without aeration or an agitation device. Appl Microbiol Biotechnol,

, 8979–8987

Downloads

Published

31-07-2022

How to Cite

Hasanah, N. R. P. ., Febriani, I. ., Israyusnita, F. ., Septian, F. R. D. . ., & Saputra, I. K. . (2022). Efektivitas Microalgal Fuel Cell Spirulina sp. sebagai Sumber Energi Listrik. Jurnal MIPA Dan Pembelajarannya (JMIPAP), 2(7). Retrieved from http://journal3.um.ac.id/index.php/mipa/article/view/3570

Issue

Section

Articles